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Voronoi Fluid Particle Model for Euler Equations
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We present a fluid particle model based on the Voronoi tessellation that allows
one to represent an inviscid fluid in a Lagrangian description. The discrete
model has all the required symmetries and structure of the continuum equa-
tions and can be understood as a linearly consistent discretization of Euler’s
equations. Although the model is purely inviscid, we observe that the proba-
bility distribution of the accelerations of the Voronoi fluid particles shows the
presence of tails at large accelerations, what is compatible with experimental
Lagrangian turbulence observations.
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1. INTRODUCTION

The understanding of fluid turbulence is still incomplete despite many
decades of continued effort.(1) The large number of degrees of freedom
involved in the phenomenon makes the attack of the problem very diffi-
cult, both theoretically and computationally. The classical scaling theory
of Kolmogorov(1) predicts universality in the so called inertial range. How-
ever, deviations from the scaling predictions are observed in real fluids
which are associated to the phenomenon of intermittency. A particularly
interesting development towards the understanding of intermittency has
come from the turbulent transport of passive scalars.(2) By following the
Lagrangian trajectory of fluid particles, it has been possible to identify
statistical integrals of motion that are at the root of intermittency.(2) The
development of fast tracking systems has allowed to study experimentally
the statistical properties of suspended particles in a turbulent flow.(3) It
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turns out that a Lagrangian description of fluid flow is a natural one in
order to get some insight on the physics of turbulence.

The aim of this paper is to study an extremely simple and appealing
fluid particle model which is based on the Voronoi tessellation of space.
Just by requiring that the fluid particles move according to their velocity
and that the energy of the system is conserved leads naturally to the equa-
tions of motion for the reversible part of the dynamics. We show that for
smooth flows, the equations are a discrete version of Euler’s equations for
an inviscid compressible fluid. We observe that the model presents statis-
tical features that are very similar to experimental measurements of fluid
tracers in fully developed homogeneous turbulence. Of course, our model
is purely reversible, with no dissipation and, therefore, cannot be consid-
ered as a proper model for turbulence, not even in the limit of infinite
Reynolds number. As it is well known, the limit of infinite Reynolds num-
ber is singular and, therefore, no matter how small are the dissipative
terms in the Navier–Stokes equations, they play a crucial role, either in
boundary layers or in setting a viscous length scale in homogeneous tur-
bulence, the Kolmogorov scale. Nevertheless, in this paper we explore to
what extent, the inviscid equations already capture statistical features of
real turbulence.

2. EULER EQUATIONS FOR AN INVISCID FLUID

Euler’s equations describe the dynamics of a compressible inviscid
fluid and have the following form

∂tρ =−∇·ρv, ∂tρv =−∇·ρvv −∇P, ∂t s =−∇·sv, (1)

where ρ = ρ(r, t) is the mass density field, v = v(r, t) the velocity field,
s = s(r, t) the entropy density field and P = P eq(ρ(r, t), s(r, t)) the pres-
sure field which, according to the local equilibrium assumption, is given
by the equilibrium equation of state evaluated at the non-equilibrium val-
ues of the mass and entropy density fields. The Euler’s equations can
be expressed in the Lagrangian point of view by introducing Lagrangian
coordinate R(r, t) as the solution of the equation

∂tR(r, t)= v(R(r, t), t), (2)

with initial condition R(r,0) = r. We introduce the volume field as the
solution of the following equation

d

dt
V(R(r, t), t)=V(R(r, t), t)∇·v(R(r, t), t), (3)
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which is the equation for the rate of change of an infinitesimal volume
that is transported by a flow field v(r, t). We introduce the extensive mass
M(r, t), momentum P(r, t) and entropy S(r, t) fields which are related to the
density fields by ρ(r, t) = M(r, t)/V(r, t), ρv(r, t) = P(r, t)/V(r, t), s(r, t) =
S(r, t)/V(r, t). In terms of these extensive fields Eqs. (1) become simply

d

dt
M =0,

d

dt
P=−V∇P,

d

dt
S =0. (4)

These equations are remarkably simple and physically they express the fact
that the environment seen as we follow the flow is one in which the mass
and the entropy remain constant and the forces on that environment are
just pressure forces. Some textbooks(4) prefer to start from the physics
expressed in Eqs. (4) in order to deduce Eqs. (1).

3. THE FLUID PARTICLE MODEL

Our aim now is to formulate a discrete model of the Euler equations
that is as close to Eqs. (4) in structure as possible. To this end we intro-
duce N fluid particles that represent the whole fluid system. The state of
these particles is characterized by their positions Ri , momenta Pi , entropy
Si and mass Mi . Each fluid particle has also some derived quantities like
the volume Vi , the velocity Vi =Pi/Mi and the internal energy Ei . The vol-
ume Vi of the fluid particle is a geometric quantity given as a function of
the positions of the particles Vi (R1, . . . ,RN), whereas the internal energy
is, through the local equilibrium hypothesis, a function of the extensive
variables of the fluid particle (mass, entropy and volume), this is Ei =
E(Mi, Si,Vi ). In this sense, a fluid particle is considered as a small thermo-
dynamic subsystem characterized by the equation of state. This equation
of state governs the thermodynamic behavior of the fluid particles, and so,
associated to each fluid particle we can also define a temperature Ti and
a pressure Pi . The total energy of the system is defined as

E =
∑

i

[
P2

i

2Mi

+E(Mi, Si,Vi )

]
. (5)

Now we turn to the dynamics of the state variables. We postulate the fol-
lowing equations of motion

Ṙi =Vi , Ṁi =0, Ṡi =0. (6)
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The first equation mimics the Lagrangian equation (2), whereas the last
two equations represent the corresponding continuum equations (4). The
momentum equation follows from the requirement that the energy(5) is
conserved, i.e. Ė =0. This leads to

MiV̇i =
∑

j

∂Vj

∂Ri

Pj . (7)

We still have to specify the volume of a fluid particle as a function of the
positions of the fluid particles. Before making a selection we note that any
sensible selection for the volume of the fluid particles must be translation-
ally and rotationally invariant, this is

Vi (R1, . . . ,RN) = Vi (R1 +a, . . . ,RN +a),

(8)Vi (R1, . . . ,RN) = Vi (�R1, . . . ,�RN),

where a is an arbitrary vector and � is an arbitrary rotation matrix. If we
take the derivative of the first equation in (8) with respect to a and eval-
uate the result at a =0 and of the second equation with respect to � and
evaluate it at �=1, we have the identities

∑

i

∂Vj

∂Ri

=0,
∑

i

Ri × ∂Vj

∂Ri

=0. (9)

These equations imply that Eqs. (6) and (7) conserve total linear momen-
tum P = ∑

i Pi and total angular momentum defined as L = ∑
i Ri × Pi .

Note, however, that the invariance under rotation is broken if the con-
tainer has no rotational symmetry, as it happens in systems with periodic
boundary conditions. Total mass and total entropy are trivially conserved
by Eqs. (6) and (7). The invariance of the energy under permutation of the
particle labels leads to a quasi-conservation law of a discrete form of the
circulation, as has been shown in refs. 5 and 6.

As a final remark, we note that Euler’s equations (1) have a Hamilto-
nian structure(7–9) and it can be shown that the discrete model described
by Eqs. (6) and (7) has also a Hamiltonian structure.(10) Note that

− ∂E
∂Ri

=
∑

j

∂Vj

∂Ri

Pj , (10)
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where E is the internal energy of the whole system. Therefore, Eqs. (6) and
(7) have the form of a molecular dynamics where the internal energy E
plays the role of an “effective potential energy” that depends on the posi-
tions in a many-body form through the volumes of the fluid particles. The
conservation of linear and angular momentum follows from the invari-
ance of the energy with respect to translations and rotations. Note that the
energy (Eq. (5)) depends on the position of the fluid particles only through
the volumes of the fluid particles.

All the above properties make the proposed model very appealing
from a theoretical point of view but, of course, the discrete model has
been proposed just by analogy with the continuum model. However, we
show below that the particle algorithm is a discretization of the Euler
equations to second-order in the spatial discretization length, this is,

− 1
Vi

∑

j

∂Vj

∂Ri

Pj ≈ (∇P)(Ri ). (11)

Before proceeding to prove Eq. (11) we still have to specify the actual
dependence of the volume of each fluid particle on the positions of the
neighboring fluid particles. A first possibility leads to the smoothed par-
ticle hydrodynamics or dissipative particle dynamics approach, where the
volume is given by the inverse of the density Vi = d−1

i .(11) The density di

of the fluid particle, in turn, is defined in terms of a weight function W(r)

of finite support, this is, di =
∑

j W(rij ), where rij is the distance between
particles i, j . The volume thus defined satisfies Eq. (8). The problem with
this approach is that Eq. (11) is only satisfied if the range of the weight
function is very large. Typically a fluid particle needs to interact with ∼70
neighbors in 2D and ∼150 in 3D, which amounts to a large computation
time.

A second possibility is the definition of the volume of the fluid par-
ticles through the Voronoi tessellation. In this case, the volume of a given
fluid particle corresponds to the volume of the region that is closer to that
fluid particle than to any other particle in the system. In this way, a parti-
tion of space in non-overlapping cells that cover all the space is achieved.
The tessellation also provides a concept of local neighborhood and, typi-
cally, a fluid particle has six neighbors in 2D and 12 in 3D. In addition,
a quite remarkable property of the Voronoi tessellation is that for linear
fields of the form P(r) = a + b·r, where a is a constant scalar and b is a
constant vector, Eq. (11) is not approximate but exact. Note that the gra-
dient of the linear pressure field is given by the vector b. Then we claim
that
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− 1
Vi

∑

j

∂Vj

∂Ri

[
a +b·Rj

]=b. (12)

In order to proof this linear consistency property, (Eq. (12)), we need sev-
eral results concerning the Voronoi tessellation. The first one is the deriv-
ative of the volume with respect to the position of the cells, which takes
the values (see ref. 12)

∂Vj

∂Ri

=−Aij

(
cij

Rij

− eij

2

)
for i �= j,

∂Vi

∂Ri

=
∑

j �=i

Aij

(
cij

Rij

− eij

2

)
. (13)

Here, Aij is the area of the face of contact between cells i and j , cij is the
position of the center of mass of the face of contact between cells i and
j with respect to the point (Ri + Rj )/2 and eij is the unit vector point-
ing from particle j to particle i. Note that the vector cij is parallel to the
face i, j , whereas eij is perpendicular to it. The following highly non-triv-
ial results are also relevant. For every cell i not at the boundary of the
system, we have

∑

j

Aij eij =0, − 1
Vi

∑

j

Aij Cµ
ij eν

ij = δµν, (14)

where Cij = cij + (Ri + Rj )/2 is the position of the center of mass of the
face joining cells i, j . The proofs of the identities (14) are presented in the
Appendix A. By using Eqs. (13) and (14) on the left-hand side of (11)
we easily arrive at the conclusion that (11) is true for arbitrary meshes
(that is, for any fluid particle configuration). The remarkable property in
Eq. (12) shows that we have a discrete representation of the gradient oper-
ator that produces exact results for linear fields. This shows that the iden-
tity in Eq. (11) is valid to second-order in the spatial discretization length.
The linear consistency property is one of the main results of this paper,
as it shows that the discrete model formulated on physical grounds can be
interpreted as a Lagrangian discretization of the continuum Euler equa-
tions (1) which is second-order in space. Other Voronoi discretizations
(ref. 13) do not share this very appealing property and lead, actually, to
unphysical numerically unstable simulations in the limit of zero viscosity.

4. SIMULATION RESULTS

We have numerically solved Eqs. (6) and (7) in two dimensions. These
equations are closed with the equation of state for an ideal gas and we
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will use the units described in ref. 12. In order to check whether the par-
ticle model does actually simulates an inviscid fluid, we have conducted a
simulation in which initially the particles are in a triangular lattice and the
initial velocity profile is a transverse sinusoidal wave. For a viscous fluid,
this type of perturbation decays in an exponential way with a time scale
that is inversely proportional to the viscosity. For an inviscid fluid the per-
turbation would never decay. However, this type of perturbation is unsta-
ble due to the existence of an inflection point in the flow. What we observe
in our simulations, as shown in left Fig. 1 is that the perturbation does
not decay for quite a long time. To be more specific, the sinusoidal per-
turbation decays with a viscosity which within the errors of the simula-
tion is of the order of 10−10, i.e., virtually zero in the units selected as
in ref. 12. After some time, the particles at the inflection point start to
acquire off-planar components and the system eventually gets completely
disordered with a chaotic movement of the particles as the final behavior.
This behavior is characteristic of all the simulations we have conducted
and is a reflection that almost any Euler flow is completely unstable.(14)

It is certainly very difficult to show that a particular numerical method
for solving Euler’s equations produces correct results, due to the intrinsic
unstable character of these equations which reflects in the development of
singularities in finite time, not cured by the presence of a dissipative mech-
anism. We have conducted simulations of the decay of an initial transverse
sinusoidal velocity profile by introducing viscous forces as described in ref.
12, and have measured the viscosity from the decay time. In this case, the
simulations are stable. By plotting the measured viscosity versus the input
viscosity we may infer the value of the effective viscosity in the limit of

Fig. 1. Left: Amplitude of an initial transverse sinusoidal velocity field as a function of
time. The amplitude remains constant until the flow becomes unstable around time 20, near
the inflection point. Right: Viscosity η measured from the decay in time of a transverse sinu-
soidal velocity versus input viscosity η0 when the model includes viscous forces. The extrap-
olation of the straight line of unit slope shows that the inviscid particle model does actually
model an inviscid fluid.
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zero input viscosity. The result is plotted in right Fig. 1 and it shows that
for this smooth flow we have a well defined limit of zero input viscosity
leading to zero measured viscosity.

The system described by Eqs. (6) and (7) reaches a dynamical equi-
librium state apparently similar to the usual one in Molecular Dynamics
simulations. One would be tempted to describe this non-dissipative final
state as a compressible homogeneous turbulence state corresponding to an
infinite Reynolds number (formal limit of zero viscosity). That this is not
entirely the case can be quantified by measuring the kinetic energy spec-
trum. While in the Kolmogorov theory it is given by a power law, in our
case it is a flat spectrum corresponding to spatial white noise.

A quantity of recent interest in the field of turbulence is the distribu-
tion of accelerations of fluid tracers due to the presence of unusual tails in
the distribution showing that it is very probable to have high-values for the
acceleration.(3,15) We have compiled from our simulation results the dis-
tribution of accelerations in the dynamical equilibrium state of our Voro-
noi fluid particles in a box with periodic boundary conditions. A typical
example of the acceleration distribution in logarithmic scale as a function
of the acceleration divided by the square root of its variance is presented
in left Fig. 2. Note that the distribution has tails at high-accelerations that
extend much further than they would for a Gaussian distribution with the
same variance. The flatness factor 〈a4〉/〈a2〉 of this distribution takes a
value around 7.75, suggesting that the acceleration of the fluid particles

Fig. 2. Left: In circles the Voronoi acceleration distribution in the so called dynamical equi-
librium state. The probability density function is normalized by its standard deviation. A
best Gaussian fit at the region of large probability is also shown. Big accelerations appear
in the system quite often, as compared to those in a Gaussian distribution. This distribu-
tion corresponds to a simulation of N =2500 fluid particles with a total energy of E =1.0025
in reduced units. Right: Acceleration distribution P(a) in logarithmic scale as a function of
a/〈a2〉1/2 for a Lennard–Jones system. Circles correspond to simulation results, continuum
line is the best Gaussian fit and the dashed line corresponds to an exponential fit.
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is an intermittent variable (for Gaussian distributions the flatness factor
is 3). The authors in ref. 3 make the observation that in fully developed
turbulence the viscous damping term in Navier–Stokes equations is small
compared to the pressure gradient term and, therefore, the acceleration
is closely related to the pressure gradient. This may be the reason why
our discrete model still captures this intriguing feature of developed tur-
bulence.

In order to see the relevance of the numerical result for the accel-
erations in the Voronoi discrete model, we compute the acceleration
distributions in a Molecular Dynamics simulation for a purely repulsive
Lennard–Jones type interaction (the WCA potential, see ref. 16). The ther-
modynamic state of the system corresponds to a typical liquid condition
given by ρ = 0.844 for the fluid density and T = 0.71 for the temperature
(in conventional reduced units in MD for Argon) while the number of
molecules is NT =1000. The results for the probability distribution for the
accelerations P(a) as a function of the accelerations divided by the square
root of its variance is shown in right Fig. 2. This distribution function has
an exponential form. The Molecular Dynamics distribution is very differ-
ent from the one for the Voronoi fluid particle model.

In order to get a better insight into the dynamics of this discrete fluid
particle model, we have also computed the velocity autocorrelation func-
tion of the fluid particles. To analyze the results, we introduce two velocity
scales in our reduced units, the speed of sound for an ideal gas c=√

2T ,
where T is the mean temperature of the system, and the kinetic velocity
vk =√

2K, where K is the mean total kinetic energy of the system. From
these two velocities, we can extract two time scales related to the time it
takes a particle to travel with a particular velocity its typical particle linear
size l0. The linear size l0 of a particle is equal to the typical interparticle
distance. It can be measured from the first peak of the radial distribution
function plotted in Fig. 3. The two timescales are a sonic time τc = l0/c

and a kinetic time τk = l0/vk.
The typical velocity autocorrelation function C(t) = 〈v(t)·v(0)〉 is plot-

ted in Fig. 4. The autocorrelations are normalized with the initial value,
this is, C(t)/C(0). The oscillation at short times in the velocity auto-
correlation function occurs at the sonic time scale and it is a reflection
of the compressibility of the model. The ulterior evolution corresponds
to an exponential decay with a time scale corresponding to the kinetic
time scale. To show this, we have conducted three simulations at the
same thermodynamic state with different number of particles (Fig. 5).
We see that the smaller particle size forgets quicker its initial velocity
value. We have also conducted simulations with the same number of
particles and different kinetic average energy. The corresponding velocity
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Fig. 3. Pair correlation function g(r) for the same thermodynamic state, for increasing
number of fluid particles N =400,900,1600 (left). The curves collapse into a master curve if
we rescale the distance with l0 (right).
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Fig. 4. Left: Log–lin plot of the typical behavior of the velocity autocorrelation function in
time. Detail at short times is shown in the inset picture. Right: Log–log representation of the
left figure in which two regimes after the sonic scale are clearly distinguished, first an exponen-
tial decay and for longer times an algebraic dependence (the solid lines are the corresponding
fits). This second regime has to do with the celebrated hydrodynamic long time tail t−1.
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Fig. 5. Left: Normalized velocity autocorrelation function for a fixed total energy and three
different resolutions N =400,900,1600 in the same box. Right: Log-lin plot of the left figure,
where the exponential decay is apparent.
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Fig. 6. Left: Velocity autocorrelation function for three different total kinetic energies and
the same number of fluid particles N = 400. Top line corresponds to the smaller mean total
kinetic energy. Right: Kinetic energies as a function of time. A fixed internal energy E0 = 1
has been chosen for the three simulations and the selected initial values are K0 = 1,2,3 ×
10−3, respectively.
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Fig. 7. Velocity correlation functions rescaled by the C(t)/v2
k as a function of the rescaled

time t/τk . Left picture corresponds to Fig. 5 and right picture to Fig. 6. After the sonic time,
they all lie on a master curve that can be fitted to an exponential.

autocorrelation functions are plotted in Fig. 6. All the autocorrelation
functions can be collapsed into a single one in the region of exponential
decay when we rescale C(t)/v2

k, and t/τk. This is shown in Fig. 7.

5. CONCLUSIONS

We have presented a Lagrangian fluid particle model for the simu-
lation of Euler’s equations based on a Voronoi tessellation. The model
is very elegant and simple, and we show that it is a faithful representa-
tion of Euler’s equation whenever the velocity field is smooth. Of course, a
purely inviscid fluid readily develops instabilities.(14) Onsager conjectured
that the fully developed velocity field of the Euler’s equation can even be
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non-differentiable.(17,18) In the fluid particle model this non-differentiability
can be assimilated to the chaotic and random motion of the final dynamic
equilibrium state of the fluid particles. For a chaotic distribution of veloc-
ities, one would conclude that it is not possible to define a derivative of
the velocity field. Even though the model is purely reversible, the system
has, at a coarse-grained level, an associated viscosity, in the same way as a
Lennard–Jones system (governed by Newtons’ reversible equations of
motion) has a viscosity (which is a parameter that appears in the hydrody-
namic equations). A given system may be described by reversible or irrevers-
ible dynamic equations depending on the detail of the level of description.

The conclusion of the simulations is that the only relevant length in
the system is fixed by the fluid particle size (l0), and the exponential decay
of the velocity autocorrelation function only depends on this scale and the
kinetic velocity.

Despite of the fact that our model cannot be taken as the inviscid limit
of the viscous Navier–Stokes equations, which is singular, we observe in
the model several statistical features that actually correspond to similar fea-
tures observed in experiments on Lagrangian tracers in homogeneous fully
developed turbulence. In particular, we have observed that the fluid par-
ticle velocity autocorrelation function shows an exponential decay beyond
the sonic scale. The characteristic decay time scales with the kinetic time
scale. The higher the kinetic energy of the fluid particles (which is a mea-
sure of the intensity of this “turbulence”), the fastest is the decay. As men-
tioned in ref. 19, the exponential decay dictates a Lagrangian time scale
that appears as a time characteristic of the energy injection. This seems to
be also our case, where the kinetic time scale τk plays the role of the exper-
imental Lagrangian time scale, related to the intensity of this “turbulence”.
The acceleration distribution function reveals large tails that extend much
further than they would for a Gaussian distribution with the same variance.
All these results agree with recent experimental results.(3,15) One possible
explanation for this agreement is that in fully developed turbulence, the vis-
cous damping term in Navier–Stokes equations is small compared to the
pressure gradient term and therefore, the acceleration is closely related to
the pressure gradient, which is the only force in our model.

APPENDIX A. MATHEMATICAL PROPERTIES OF THE VORONOI

TESSELLATION

In this appendix, we summarize some mathematical properties of the
Voronoi tessellation. Other interesting results and more detailed definitions
concerning the Voronoi tessellation can be found in the appendix of ref.
12. The Voronoi tessellation is a geometrical construction associated to
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a collection of N points in space, named cell centers or nodes, which
have positions {R1, . . . ,RN }. The tessellation associates to every point the
region of space that it is closer to that point than to any other point of the
collection. This produces a partition of the space into a cellular structure.
The common wall between two neighbor cells are, by definition, at equal
distance of the nodes of each cell and it is perpendicular to the vector
Rij =Ri −Rj joining the nodes.

In this note, we will make extensive use of the smooth characteristic
function χi(r) re-introduced by Flekkøy and Coveney,(20) and which are
known in a different context as Shephard functions. The smoothed char-
acteristic function of the Voronoi cell i is defined as

χi(r)= �(|r −Ri |)∑
j �(|r −Rj |) , (A.1)

where the function �(r) = exp{−r2/2σ 2} is a Gaussian of width σ . This
characteristic function satisfies the relations

∂χi(r)
∂r

= 1
σ 2

∑

j

χi(r)χj (r)(Ri −Rj ),
∑

j

∂χi

∂Rj

=−∂χi

∂r
. (A.2)

We can introduce the space average of a function f (r) over the Voronoi
cell i

[f ]i = 1
Vi

∫
drχi(r)f (r) Vi =

∫
drχi(r), (A.3)

where Vi is the volume of the ith Voronoi cell.
Consider now the cell average of the divergence of an arbitrary vector field
A(r), this is

[∇·A]i = 1
Vi

∫
drχi(r)∇·A(r)

= 1
Vi

∫

∂V

dS·A(r)χi(r)− 1
Vi

∫
drA(r)·∇χi(r), (A.4)

where we have made use of Gauss’ theorem. The first surface integral over
the boundary of the full domain will vanish if the cell i does not cross this
boundary (in which case the characteristic function of cell i vanishes for
all points of the boundary).

By using the first relation in Eq. (A.2) we have
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[∇·A]i = − 1
Vi

∫
drA(r)·∇χi(r)

= 1
Vi

∑

j

Rij

1
σ 2

∫
drA(r)χi(r)χj (r). (A.5)

First, let us assume that the vector field is just constant. Its divergence will
be simply zero. This implies the following identity

0=− 1
Vi

∑

j

Rij

Aij

Rij

·A, (A.6)

where we have introduced

Aij =Rij

1
σ 2

∫
drχi(r)χj (r). (A.7)

This quantity Aij becomes in the limit σ → 0 the area of the face
of contact between cells i, j . Equation (A.6) becomes then

∑
j Aij eij = 0,

where eij is the unit vector normal to the face i, j . Therefore, Aij eij is
the “surface vector” of face i, j . In words,

∑
j Aij eij = 0 states that for

any given Voronoi cell not on the boundary of the system, the sum of the
“surface vectors” over the cell vanish.

Second, let us assume that the vector field A(r) depends linearly on
the positions, this is, A(r) = �·r, where � is a constant matrix. Substitu-
tion in Eq. (A.5) leads to

tr� = − 1
Vi

∑

j

Rij ·�· 1
σ 2

∫
drχi(r)χj (r)r

= − 1
Vi

∑

j

Aij eij Cij :�, (A.8)

where the double dot means double contraction. The vector Cij is defined
through this very equation and is, in the limit σ → 0 the position of the
center of mass of the face i, j . For arbitrary matrices � (and, in particu-
lar, for those matrices � with only one single entry different from zero),
Eq. (A.8) holds if and only if

− 1
Vi

∑

j

Aij eij Cij =1, (A.9)

where 1 is the identity matrix.
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